Poster Presentation 11th Asia-Pacific Congress of the International Society on Toxinology 2021

Analysis by RP-HPLC of the protein profile of Bothrocophias myersiCrotalus durissus and Bothrops asper from Colombian Andean Region (#101)

Stefano Scovino 1 , Karen Sarmiento 2 , Carlos Galvis 3 , Ana Lucía Castiblanco 1 , Fabio Aristizabal 4
  1. Laboratorio de Análisis Instrumental, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Bogotá DC, Colombia
  2. Departamento de Ciencias Fisiológicas, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Bogotá DC, Colombia
  3. Colección de Fauna, Fundación Zoológica de Cali, Cali, Valle del Cauca, Colombia
  4. Departamento de Farmacia, Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Bogotá DC, Colombia

Snake venoms comprise a highly complex mixture of proteins, and there is also a high interspecific and intraspecific variability in their composition, even in the same region. Our aim was to compare the composition of the venoms of Bothrocophias myersi, Crotalus durissus, and Bothrops asper, snakes from the Colombian Andean region by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC). The venoms were given to the research group under an agreement with Fundación Zoológica de Cali. The venoms pool was obtained by manual extraction, lyophilized and frozen. The venom protein was quantified by direct measurement with Nanodrop® 280 nm. The protein composition was established by RP-HPLC, using a Lichosper 100 RP, C18 column (250X4 mm) with a pore size of 5µm, as well as by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). The highest quantity of protein was found in the venom of B. myersi (108.6 mg/mL) followed by C. durissus (78.1 mg/mL) and B. asper (74.1 mg/mL). All venoms showed bands of 15 and 50 KDa by using SDS-PAGE. B. myersi venom chromatogram exhibited 16 peaks by RP-HPLC. We conclude that the composition of the three venoms is quite similar, being phospholipase A2 the common protein therein, and together with metalloproteinases they were the most abundant protein families in the venom of B. myersi. SDS-PAGE and RP-HPLC techniques allow a first approach to the profile of the venoms, which in turn could clarify the clinical syndrome produced

 

  1. Alarcón, J. C., & Núñez, V. (2014). Isolation and functional characterization of a basic phospholipase A2 from Colombian Bothrops asper venom. Vitae, 21 (1), 38–48.
  2. Alape Girón, A., Flores Díaz, M., Sanz, L., Madrigal, M., Escolano, J., Sassa, M., & et al. (2009). Studies on the venom proteome of Bothrops asper: Perspectives and applications. Toxicon, 54(7), 938–48
  3. Angulo, Y., & Lomonte, B. (2009). Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 54(7), 949–57.
  4. Boldrini-França, J., Corrêa-Netto, C., Silva, M., Rodriguez, R. S., De La Torre, P., Pérez, A., & et al. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73(9), 1758-76.
  5. Angulo, Y., & Lomonte, B. (2009). Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 54(7), 949–57.
  6. Boldrini-França, J., Corrêa-Netto, C., Silva, M., Rodriguez, R. S., De La Torre, P., Pérez, A., & et al. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73(9), 1758-76.
  7. Calvete, J., Sanz, L., Cid, P., De La Torre, P., Flores-Díaz, M., dos Santos, C., & et al. (2010). Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus. Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along. Proteome Research, 9(1), 528–44.
  8. De Oliveira, S., Magalhães, M., Salazar, V., Valadares, M., & Da Cunha, L. (2015). Identification of crotamine in the venom of Crotalus durissus collilineatus by three different methods. Toxicon, 95:46–51.
  9. Esquivel E, L. L. (2004). Cromatografía de fase reversa. Métodos Fisicoquímicos en Biotecnología. UNAM
  10. Fernández, J., Gutierrez, J. M., Angulo, Y., Sanz, L., Juárez, P., Calvete, J., & et al. (2010). Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: Biochemical and toxicological characterization. Biochimie, 92(3), 273–83.
  11. Instituto Nacional de Salud. (2018). Accidente ofídico en Colombia. Bogotá.
  12. Johnson, M. (30 de 01 de 2012). Cuantificación de proteínas. Obtenido de Labome: 30 de enero de: http://www.labome.es/method/Protein-Quantitation.html. 2012
  13. León G, S. L. (2011). Immune response towards snake venoms Inflamm Allergy Drug Targets. 2011 Oct; 10(5):381-98.
  14. Lomonte, B. (2007). Electroforesis en Gel de Poliacrilamida. En L. B, Inmunología General: Manual de Laboratorio (90–9.).
  15. Lomonte, B., & Calvete, J. (2017). Strategies in 'snake venomics' aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. The journal of venomous animals and toxins including tropical diseases. 23:26.
  16. Lozano González, T. (2014). Identificación de proteínas con actividad PLA2 en el veneno de la serpiente Bothrocophias myersi. Universidad ICESI.
  17. Minambiente. (2013). Programa para la conservación de serpientes en Colombia. Bogotá: Universidad Nacional de Colombia
  18. Niño, R. (2018). Análisis comparativo del contenido proteico de venenos de serpientes de la familia Viperidae de diferentes regiones de Colombia mediante el empleo de cromatografía líquida y electroforesis. Bogotá: Universidad Nacional de Colombia
  19. Oguiura N, C. M. (2009). Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene, 446(1), 35–40
  20. Pereañez, J., Preciado, L., Fernández, J., Camacho, E., Lomonte, B., Castro, F., Castaño, S. (2020). Snake venomics, experimental toxic activities and clinical characteristics of human poisoning by Bothrocophias myersi (Serpentes: Viperidae) from Colombia. Journal of Proteomics. 30;220:103758.
  21. Quintana-Castillo, J., Vargas, J., Segura, C., Estrada Gómez, S., Bueno Sánchez, J. C., & Alarcón, J. C. (2018). Characterization of the venom of C. d. cumanesis of Colombia: Proteomic analysis and antivenomic study. Toxins, 10(2), 1–12
  22. Salazar Valenzuela, D., Mora Obando, D., Fernández, M., Loaiza Lange, A., Gibbs, H., & Lomonte, B. (2014). Proteomic and toxicological profiling of the venom of Bothrocophias campbelli, a pitviper species from Ecuador and Colombia. Toxicon, 90:15–25.
  23. Sanhajariya, S., Duffull, S. B., & Isbister, G. K. (2018). Pharmacokinetics of Snake Venom. Toxins 7;10(2):73.
  24. WHO (2017). Guidelines of the Production, Control and Regulation of Snake Antivenom Immunoglobulins In: Guidelines for the production, control and regulation of snake antivenom immunoglobulins. In Technical Report Series No. 1004 (page 338). World Health Organization.